DIANCE FERNANDEZ/RON SELLERS

technology WD

Picturing Program Design

UML offers standard notation for modeling complex systems.

or millennia, people have been

using graphical approaches—stick

figures and the like—to com-

municate ideas. When the first pro-
grammers started creating applications
for business users (and it quickly became
clear that neither party understood
the other’s language), once again
stick figures (along with boxes,
lines, bubbles, and the occasional
word) came to the rescue.
Over time, various graphi-

cally oriented techniques, such
as producing the data definition
diagrams used by structured pro-
grammers and the entity relation-
ship diagrams used for relational
database applications, became
mainstream approaches to facili-
tating analysis and design as well
as a means of recording and com-
municating system requirements. Today,
in the world of object-oriented and
distributed computing, Unified
Modeling Language (UML) diagrams
serve these purposes.

WHAT IS UML?

Managed by the Object Management
Group (OMG, www.omg.org), UML offers
an industry-standard means of modeling
complex systems. It is a unification of
several leading object-oriented modeling
approaches from the mid-1990s—pri-
marily Booch notation (named for its
creator, Grady Booch), James Rumbaugh’s
Object Modeling Technique (OMT), and
Ivar Jacobson’s Object-Oriented Software
Engineering (OOSE).

Modeling—creating simplified repre-
sentations of various aspects of a soft-
ware system (prior to building it) that
convey information about the system
from a variety of perspectives—is a basic
concept of object-oriented development.
Just as a blueprint provides the basis that

gives the architect, the contractor, and
ultimately the homeowner a sense of the
design and features of a house before
construction begins, UML “bridges the
gap between the world that customers,
users, and analysts understand and that

of the developers, engineers, and archi-
tects implementing the system,” accord-
ing to Guus Ramackers, Oracle principal
product manager for UML and cochair of
the OMG’s UML 2.0 task force.

One of the key benefits of modeling
is that the development process is more
productive and the systems you develop
will more likely meet requirements, says
Ramackers. “UML helps you capture your
requirements. It lets you define what
the system should do, through use cases
and activities, and it lets you graphically
represent the objects that will do it.” The
result is greater developer productivity
and a greater likelihood that the resulting
system will perform as expected.

DIFFERENT DIAGRAMS

The UML 1.5 specification comprises
nine different types of diagrams, many of
which are specifically relevant to environ-
ments other than those involving J2EE
enterprise business-level applications, says
Ramackers. “For example, state-machine

ORACLE MAGAZINE

diagrams are particularly relevant to real-
time applications but are much less rel-
evant to modeling data-focused enterprise
applications.” The UML diagrams com-
monly used by Java and J2EE developers
include the following;

. Use-case diagrams model the
interactions between a system
and external entities. The exter-
nal entities are depicted by tried-
and-true stick figures (actors in
the vernacular of UML); these
are typically human users of the
system but may be other pro-
cesses or other systems. The use
case, represented as an oblong
oval, describes a system capabil-
ity or service in a few words. The
focus is on what the system does,
not on how it does it. Use-case
diagrams are typically accom-
panied by detailed textual definitions.
Depending on the intended audience,
use cases can be drawn and discussed at
various layers of abstraction.

Class diagrams model the structure
(rather than the behavior) of the class
that makes up the system (or, more
likely, the classes that make it up).
These are depicted as simple boxes
broken up into three general areas that
show the name of the class, the class
attributes, and the operations (methods,
in Java). Class diagrams are widely used
to define class structure in any pro-
gramming language (Java, C++, and so
on). The class diagram is used to show
relationships (inheritance, association,
dependency) among classes and inter-
faces in a hierarchy.

Activity diagrams show the processing
flow of a business or system process,
such as a workflow or integration
process. Much as in the flowchart of
structured programming, activities
describe the processing rules behind a

MAY/JUNE 2005 51

use case or the sequencing of sets of use
cases. Activity diagrams typically incor-
porate multiple objects, but they may
also be restricted to a single object to
provide a high-level view of the states of
an object and the methods that cause it
to change state.

Sequence diagrams let you design the
interaction among the objects in a
system in the context of time—when
the interaction occurs (when one
action occurs in relationship to another
action), rather than based on what
occurs. Says Ramackers, “You'll have
any number of objects in the diagram,
and you can specify how the method
calls are being made between objects
and how the messages are being sent
between the different objects.”

UML AND ORACLE JDEVELOPER

Oracle has been involved with UML
since the beginning, as one of the par-
ticipants in developing the original
UML 1.0 specification (published in
1999) as well as an active contributor
to ongoing working group activities in
the OMG.

Oracle’s focus for UML support in
Oracle JDeveloper is to provide the
UML diagrams “that are most relevant
to the J2EE platform and SOA [service-
oriented architecture],” says Ramackers.
Oracle JDeveloper supports the use-
case, class, activity, and sequence dia-
grams just described.

Figure 1 shows a sequence diagram
in Oracle JDeveloper 10g (10.1.3
preview). The key notation in a
sequence diagram is the object life-
line—denoted by a box (bearing the
name of the object and its type) with
a line extending downward, with one
or more vertically oriented narrow
rectangles of different sizes positioned
along the line. Each rectangle typically
models the invocation of a method
on the object. Actions occur along an
object’s lifeline in chronological order,
from top to bottom.

Figure 1, for example, shows several
object lifelines and their objects’
interactions at various points in time,
initiating messages to other objects or
responding to messages from them.

52 MAY/JUNE 2005

& Oracle JDeveloper 10g Developer Preview - WorldwideSystemsIntegration.jws : Purchasing.jpr : file:/C/ jdevi0a/Jev/mywork/ Wordwideays
Fe Edt Vew Seach Nevigste Run Debug Model Refactor Versigning Tooks Window Hep

BBIQ B Xam O- ._Aﬂ.ltv > EhECRAENED

- | Bladdconmand.ava__| B8l conmand.jave | Blundoseackjova |

Figure 1: Sequence diagram in Oracle JDeveloper 10g (10.1.3 preview)

What's so great about this? It helps
you model object interactions before
you code, enabling discussion with
peer programmers. Furthermore, with
Oracle JDeveloper’s trace sequence
feature, you can test your logic before
you start developing—the trace
sequence automatically steps through
the diagram, highlighting each element
in the order in which messages will
be sent, essentially enabling you to
debug before you even begin coding.
Once you start coding, you can tie the
Sequence Modeler to the debugger to
visualize debug traces.

SUPPORT FOR MORE UML MODELS

The online version of this article

(at oracle.com/technology/oramag/
oracle/05-may/o35industry.html)
includes sections that describe Oracle
JDeveloper’s support for additional
UML models and the new UML 2.0
standard, adopted in February 2005.

CONCLUSION
In the early days of enterprise software
development, programmers often just
plunged in and started coding—an
approach that sometimes meant that
millions of dollars were wasted on proj-
ects that couldn’t be completed.

Today, it’s a commonly accepted

ORACLE.COM/ORACLEMAGAZINE

best practice to start talking about the
requirements for any new system by
using UML—for example, in terms

of its various use cases and using
class diagrams to express relation-
ships among classes. UML provides
an industry-standard way to model
systems before building them and to
talk about system features and capa-
bilities by using an easy-to-understand,
ageless graphical paradigm to effec-
tively capture requirements and docu-
ment system design. ®

Kelli Wiseth (kelli@alameda-tech-lab.com) is
technology director at Alameda Tech Lab and Research
Center (alameda-tech-lab.com).

nextSTEPS

READ

online-only article content
oracle.com/technology/oramag/oracle/05-may
o35industry.html

more about UML
www.omg.org

DOWNLOAD Oracle JDeveloper 10g

oracle.com/technology/products/jdev

LEARN how to create a UML use case
oracle. com/technology/productsljdevl 101/
lets/101/UseCaseModeli let_swf.html

LOCATE UML and MDA partners

oracle.com/technology/products/jdev/
htdocs/partners

	may_jun_2005-pg-1.pdf
	may_jun_2005-pg-2

