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Ling 165 Introduction to Natural Language Processing Lab 2, 3, 4, and 5 
Kelli Wiseth  2-September-2013 

Locations and other general information 

o Scripts located in /home/students/kwiseth/labn 

o None of the scripts requires any command-line options. All data elements are accessed by the 
script as it executes from the directory specified. 

o Previous versions of scripts have been moved into a /sandbox sub-directory within each /labn 
directory, so hopefully won’t be difficult to find the script. 

Lab 2: POS tagging using HMM 
Path/script: /home/students/kwiseth/lab2/ling165_lab2.py 

Menu at startup: Displays options to process individual datasets or all 5 datasets, and to print the report. 

Output: Displays status messages during processing and displays current report at the end of 
the process.  

Saved artifacts: Saves the afd_n.save, bfd_n.save pickled dictionary file from training process and 
the tagged output file from test data (tagged_output_n.save) for each dataset when 
processed, where n is the number of set of files from the prepared 5-fold cross 
validation method dataset. Also saves the pickled dictionary of the results-report 
(lab2_report). 

Sample run: 

 

I’ve left the final test run results in the \lab4 sub-directory, so if you select 9 from the menu you’ll 
see the last results report.  

Lab 3: Naïve Bayes classifier and word-sense disambiguation 
Path/script: /home/students/kwiseth/lab3/ling165_lab3.py 

Menu at startup: None. 

Output: Displays report of percentage sentences correctly disambiguated—82% with the given 
training and test data.  

Saved artifacts: test_drug.wsd, lab3_wsd_error.log 
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Sample run: 

 

For Lab 3, I think we’re to understand that ‘words’ are ‘features’ and that P(w | c) is just another 
way of saying P(fj | c), correct?  

Lab 4: Content selection for single document summarization 
Path/script: /home/students/kwiseth/lab4/ling165_lab4.py 

Menu at startup? No. [However, note that the newyorker.txt file has been processed in advance using 
Hahn’s clean.py script, with its output saved to ‘newyawker.txt’ file, and that 
‘newyawker.txt’ must be available to ling165_lab4.py at runtime.] 

Output: Script displays status messages during processing and then displays a two-column report 
of top-twenty words (per each approach) in descending order, starting from most 
informative. 

Saved artifacts: None.  

Sample run: 

 

For Lab 4, I ran into a couple of issues, starting with differences between character sets (utf-8 and 
ascii), which may have had to do with the settings on putty, but during the course of developing and 
testing (and looking at output), I kept ending up with the codepoints (‘\xe2\x80\x94’, for example 
for em-dash) in some of my results. As a workaround, I pre-process the ‘newyawker.txt’ file (the 
New Yorker article as output from your clean.py script) and convert these utf-8 codepoints to their 
ASCII character equivalents. For the most part, these are various punctuation marks which may be 
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eliminated anyway, but during testing I wanted to be able to see what was getting collected (or not) 
without looking at ‘\xe-etcetera’s stuff, so this was mainly for cosmetic purposes.  

Another issue was the necessity of eliminating stop-words before collecting word (term) counts, or 
not. I would have thought that the frequency of any of the various stop-words, particularly words 
like ‘the’ and ‘of’ and ‘to’ etc would have been off-set (and hence, such words would not show up in 
the top-20) because these words would appear with the same relatively high frequency when 
compared across all the brown documents—but this didn’t seem to be the case insofar as the llr list 
was concerned, which leads me to wonder if I’m still doing something wrong in Lab 4’s code. In the 
end, to obtain a list of top-20 informative words per llr, I by-pass stop-words before collecting 
counts and calculating tf-idf and llr. For performance purposes, it’s probably a good idea anyway.  

I tried to normalize the text as much as possible before collecting 
term-frequency counts, but this still isn’t perfect. I would have 
liked to have lower-cased just the initial word in a sentence but 
keep upper-casing alone elsewhere in the article, and I thought it 
might have been good to keep certain words together. After 
examining an interim version’s dictionary results and seeing that 
different counts were being accumulated (as shown in this 
screenshot), I realized it best to simply lower-case everything 
before counting.  

Since we’re comparing to documents from brown, and since the New Yorker copy-edit style is (in 
some cases) different from other news/magazines, two changes I made to the text were putting 
“per” and “cent” back together as a single word, and also hyphenating the string “output-per-hour,” 
since both of these might be found in the brown documents. (If our “corpus for comparison” were 
500 New Yorker articles rather than Brown documents, this is perhaps a moot point.) 

Finally, I also eliminated numbers, including years. In previous iterations of the scripts (before 
doing so), the years ‘2004’ and ‘2000’ show up in the top-20 tf-idf list. Since the New Yorker article 
is being compared to 500 news documents from brown, and since the Brown corpus was initially 
created in the 1960s (with I think an update in the 1970s?), I’m guessing that these dates would 
rightly show up as ‘informative’ since they wouldn’t be mentioned in our brown data. So in the end, 
I just decided to by-pass numbers and dates.  

All these decisions may have led to an incorrect handling of the problem, but in looking at the lists 
generated, it seems that these words are okay. I don’t like that the llr list is so close to that of the tf-
idf—makes me think that something’s wrong--but hopefully, it’s okay. 

Lab 5: Spelling correction (using Levenshtein, aka minimal edit distance) 
This project doesn’t actually ‘spell correct’ but rather offers possible corrections to the user. 

Path/script: /home/students/kwiseth/lab5/ling165_lab5.py 

Menu at startup? Yes. Enables entry of a single word or processing the ‘test.me’ file.  

Output: Displays list of words from Brown sorted by Levenshtein distance, limited to edit distance 
(Levenshtein distance) of 1-2. If no words within 1-2, then prints out words found within 
Levenshtein 3-4.  

Saved artifacts: None. 
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Sample run: 

 

Depending on the word entered, this script may run VERY slowly. The ‘minimumEditDistance’ 
function in this script programmatically replicates the pencil-and-paper approach we used in class 
to determine the edit distance between a source and a target word. The ‘source’ word is the word 
entered by the user, and the ‘target’ word is a word from the brown dictionary file.  

The brown dictionary words passed to the minimumEditDistance function are from a pre-selected 
subset. I tried a couple of different approaches to minimize the brown search space two of which 
remain in my script: get_brown_ltd_narrow(some_word) and get_brown_ltd(some_word). The 
more limiting of the two functions (get_brown_ltd_narrow) provides results more quickly but it’s 
flawed in that it’s too limiting: if the user had been trying to type “welcome,” that choice won’t be 
found, for example: 

 

However, using get_brown_ltd (instead of get_brown_ltd_narrow) increases the processing time 
significantly—so much so, I thought the program had hung-up. I’d like to figure out a better way of 
limiting the search space without losing content, so perhaps the better way to do it would be to use 
regular expressions (although I think regex take longer than using string functions in python?) or to 
have the pre-selection IF statement also include one or two characters from the middle of the word 
entered, so that only words from brown will be selected for search space if they begin, end, or have 
one (or some percentage) of characters in common.  

From the subset, each potential target word is sent to the minimumEditDistance function (with the 
source word), and the function calculates and returns the Levenshtein distance. The results are 
collected into one of two lists according to Levenshtein distance—one list contains words within a 
distance of 1-2, the other contains words within 3-4. Finally, the script displays the results of one 
list as appropriate for the word entered. I’m thinking that for most practical purposes, the user 
would be looking for a word within a range of 1 to 4 edits, but would prefer to see only those words 
within 1-2 if they exist. 

Of course, none of this happens if the word entered is found in the brown dictionary—the word is 
displayed accordingly.  
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