"Fantasy Language Conference"

Allophonic Variation and the Acquisition of Phoneme Categories

Sharon Peperkamp, Michèle Pettinato, and Emmanuel Dupoux Laboratoire de Sciences Cognitives et Psycholinguistique, Paris Université de Paris

8 April 2013

Overview

- Background to the Study
 - Theoretical Motivation
- Research Hypothesis
- Experiments
- Results and Analysis
- Conclusions and Next Steps
- Questions

Background

- Observations about language acquisition
 - First task of language acquisition:
 - Segment continuous signal into discrete categories that represent V and C
 - Infants distinguish allophones but not phonemes

Background (2)

Motivation

- Adults process allophonic and phonemic contrasts differently...
- We suspect that phonemes and allophones are learned on the basis of distribution analysis of stimuli
 - When do these distinctions begin to occur?

Methodology

- Develop an inventory of CV.VC sounds to use as stimuli with human subjects in...
- Two different discrimination-task experiments
 - Experiment 1: Perception of Phonemic versus Allophonic Contrasts
 - Experiment 2: Acquisition of Phoneme Categories
- Analyze outcomes
 - Determine what influence various factors may have on outcome

Creating the Stimuli

- Native French speaker (male)
- Allophonic contrast
 - [aX] [aR] [iX] [iR] [nX] [nR]
 - [χ] is allophone of [κ] **Γ**
 - Environment is adjacent (either side) of voiceless Cs
- Phonemic contrast
 - [am] [an] [im] [in] [um] [un]
- Phonological context
 - 40 CV syllables made up of one each...
 - [p, b, t, d, f, v, s, z] + [a, i, u, e, o] = [pa], [pi]...

Creating the Stimuli: Overview

- Create test syllables from raw materials
 - Modify allophonic raw files to correct for vowel influence
 - Use phonemic raw files, 2 tokens each
 - Splice on phonological contrast raw sounds to all of the above to create disyllabic 'phrases'
- Result is an inventory of [CV] syllables that will presented to subjects in various combinations in each experiment

Creating the Stimuli (Recording)

Creating the Stimuli

Creating the Stimuli: Inventory

 Syllables available to fabricate into [VC.CV]'s in many ways...

Phonemic]		Context]		
VOICED	VOICELESS		VOICED	VOICELESS			
am	201021233		ha	0000000000		am	ha
ling	dii	>	ba	pa	→	am	. Da
Im	In		be	pe		aß	. Da
um	un	J	bi	рі		an	. pa
		-	bo	ро		ах	. pa
Allophonic			bu	pu		-	
VOICED	VOICELESS		da	ta			
ав	ах	>	de	te			
iк	iχ		di	ti			
uв	uχ		do	to			
		-	du	tu			
			va	fa			
			ve	fe			
			vi	fi			
			vo	fo			
			vu	fu			
			za	sa			
			ze	se			
			zi	si			
			ZO	SO			
			zu	su			

Experiment 1

- Perception of Phonemic / Allophonic Contrasts
- Looks at French speakers' ability to discriminate voiced uvular fricative [μ] from its voiceless allophone [χ]
 - In isolation
 - In context
- Process
 - Training
 - Test

Experiment 1: Training

- Subjects hear 5 pairs of two-word monosyllabic phrases that 'veuf turc/veuf riche'
- Must identify as 'same' or 'different'
- Feedback given to subjects

Experiment 1: Tests

- Test Subjects
 - 12 monolingual French native native speakers
- Isolation test:
 - Subjects told "you'll hear two monosyllabic foreign words"
 - Identify whether "same" or "different"
 - Trial presented as [Syl1] + [500ms] + [Syl2]
 - ...5000 ms pause, next trial...
 - 24 trials repeated 4 times, total 96 trials
 - 50% identical syllables, 50% different syllables

Experiment 1: Tests

- Phonological context
 - Subjects presented with [VC.CV] pairs
 - "You'll hear two short sentences made of two monosyllabic words in a foreign language..."
 - Indicate whether "same" or "different"
 - 96 trials
 - [Syl1] + [CtxSyl] + 500ms + [Syl2] + [CtxSyl2]
 - Context syllables ([CtxSyl]) chosen randomly
 - Allophonic Contrast vs. Phonemic Contrast

Experiment 1: Results

- French speakers easily identify [κ] vs [χ] in **isolation**
- But they don't do so well when allophonic contrasts are embedded within phonological context
- Confirms what we already know

Errors in allophonic discrimination in **context** rise to a high level compared to phonemic.

Experiment 2

- Acquisition of Phoneme Categories
- Hypothesis: Statistical learning relies on local prototype extraction mechanism and takes segment context into account

Experiment 2: Expectations

- Subjects exposed to stimuli in certain patterns create categories accordingly
 - Monomodal distribution pattern => single category
 - Bimodal distribution pattern => two categories
- Better discrimination with bimodal
- Assess bimodal bias w/other (voice) condition.

	Token statistics	Complementary distribution	Predictions
1	monomodal	no	1 category
2	bimodal	no	2 categories
3	bimodal	yes	1 category

Experiment 2

- Test Subjects
 - 60 monolingual French native native speakers in groups of 20 for type of exposure
- Process
 - Training
 - Pre-test
 - Exposure
 - Post-test

Experiment 2: Training

- Subjects hear 5 pairs of two-word monosyllabic phrases, eg., 'veuf turc/veuf riche'
- Must identify as 'same' or 'different'
- Feedback given to subjects

Experiment 2: Pre-test

- To assess capability to discriminate [κ-χ]
 - "You'll hear two short sentences made of two monosyllabic words in a foreign language..."
 - Indicate whether "same" or "different"
 - 48 trials; subjects hear [VC.CV] sequences
 - 50% of the trial sequences contained clusters in which both elements (VC and CV) agreed or disagreed in voicing.
 - 50% of the trial sequences contained one cluster in which both elements agreed (w/r/t voicing), and one cluster in which voicing did not agree.

Experiment 2: Exposure Patterns

- Sequences of stimuli presented in three different frequency distribution patterns
 - Monomodal
 - Bimodal
 - Bimodal + Assimilation groups

(Monomodal and bimodal mislabeled in fig 2.)

Experiment 2: Exposure (Group 3)

Experiment 2: Post-test

- Discrimination of [L] and [X] test again
- Same task and instructions as pre-test
- Same 48 trials
- Post-test results compared to pre-test to assess impact of "exposure"

Experiment 2 Results

- Small yet significant decrease in error rates in post-test compared to pre-test
- Bimodal group showed strongest amount of learning

Experiment 2 Results

- Results support our hypothesis that...
 - statistical learning relies on local prototype extraction mechanism and takes segment's context into account as well.
- Context important
- Sensitive to complementary distribution
 - Due to Bimodal + Assimilation = significantly more errors in pretest than Monomodal and Bimodal.

Conclusions

- Experiment 1: Allophonic contrast in isolation readily identified by listeners; not so in context.
- Experiment 2: Provides evidence that statistical/ phonological token distribution affects learning.
- Next Steps:
 - Increase power of training procedure.
 - Test infants with training procedure and see if they acquire phoneme categories due to distribution.

Discussion and Questions

- List of references and background information in your hand-outs
- Merci!